# load library
library(leaflet)
# load data
load("data/pre_processed_data")
# run leaflet
leaflet() %>%
# center map
setView(lng = 9.970424082941788, lat = 53.553692067407596, zoom = 12) %>%
# add tiles
addTiles() %>%
# add descriptions
addMarkers(lng = c(gps_data_for_markers$lon),
lat = c(gps_data_for_markers$lat),
popup = paste0("<b>", "Location & Interval", "</b><br>",
"Start of the interval: ", gps_data_for_markers$start_date_time,
"<br>", "End of the interval: ", gps_data_for_markers$end_date_time,
"<br>", "Activity: ", gps_data_for_markers$activity_type,
"<br>", "Share of activity: ", gps_data_for_markers$percentage_activity,
"<br>", "Steps: ", gps_data_for_markers$steps,
"<br>", "Light: ", gps_data_for_markers$light_description,
"<br>", "Share of Light: ", gps_data_for_markers$percentage_light,
"<br>", "Weather: ", gps_data_for_markers$weather_description,
"<br>", "Clouds: ", gps_data_for_markers$clouds,
"<br>", "Temperature in Celsius: ", gps_data_for_markers$temperature,
"<br>", "Feels like: ", gps_data_for_markers$feels_like,
"<br>", "Humidity in %: ", gps_data_for_markers$humidity,
"<br>", "Visibility: ", gps_data_for_markers$visibility,
"<br>", "Wind speed in m/s: ", gps_data_for_markers$wind_speed),
options = markerOptions()
%>%
) addPolylines(
lng = c(gps_data_for_lines$lon),
lat = c(gps_data_for_lines$lat),
color = "darkblue",
weight = 2,
opacity = 0.7
)
Smartphone data
The processing and visualization of self-tracked smartphone data during a stay in Hamburg. A series of smartphone sensors were used for this, which were recorded using a tracking app and later processed for visualization.
R-Code
Note: This page is still a work in progress. I will add more data science projects in the future.